Satellite Based Water Monitoring and Flow Forecasting System in the Yellow River Basin

Andries Rosema, Marjolein de Weirdt, Steven Foppes (EARS)
Raymond Venneker, Shreedar Maskey (Unesco-IHE)
Contents of the presentation

- Introduction to the EWBMS
- Derivation and examples of data products
- Validation of EWBMS data
- Drought monitoring
- Flow simulation and forecasting
- Conclusions
The Energy and Water Balance

- Radiation
- Heat
- Evaporation
- Precipitation
- Run-off
Geostationary Meteorological Satellites

- GOES E (USA) 98°W
- GOES W (USA) 131°W
- 140°E
- METEOSAT MSG
- MTSat (Japan)
- FY2c
- INSAT (India)
- 94°E
- METEOSAT 5
Energy and Water Balance Monitoring System (EWBMS)

- FY2 Meteosat
- WMO-GTS precipitation

Cloud duration

Rainfall

Temperature Albedo

Evaporation

Energy balance processing

Radiation

- Water Monitoring System
- Drought Monitoring System
- Yield Monitoring System

- Water Resources, Flow forecast
- Soil moisture & Drought Products
- Crop & Pasture Yield Products

Hourly VIS, TIR

EARS

Satellite Data for Water and Food
The Role of Earth Observation in Water Resources Management, Rotterdam, May 20th, 2009

Data products
September 2005, 1st dekad

1.5 m Air temperature (°C)
Global radiation (W/m²)
Surface albedo (%)
Relative evapotranspiration (%)

EARS
Satellite Data for Water and Food
Air temperature mapping

EARS
Satellite Data for Water and Food
Observation height air temperature map

Boundary layer temperature: based on regression between noon and midnight surface temperatures

1.5 m Temperature: based on mixing surface and boundary layer temperature

China, Bayan Mud (40.75N 104.5E), clear days 2000

\[y = 1.0173x + 0.7584 \]

\[R^2 = 0.9629 \]
Precipitation monitoring
Precipitation processing

- Based on cloud detection, height classification
- Regression between cloud frequencies and GTS rainfall

- Rainfall
- Snow storage (if T<0)
The Role of Earth Observation in Water Resources Management, Rotterdam, May 20th, 2009

Precipitation

1st quarter 2000

2nd quarter 2000

3rd quarter 2000

4th quarter 2000
Evapotranspiration Monitoring
Energy balance processing

Global and net radiation

Sensible heat flux

Latent energy flux

↓

Actual evaporation

Snowmelt

\[I_n = (1-A) \left(I_{sol} - I_{ter} \right) \]
\[H = \alpha \left(T_0 - T_a \right) \]
\[LE = I_n - H \]
The Role of Earth Observation in Water Resources Management, Rotterdam, May 20th, 2009

Actual evapotranspiration

1st quarter 2000

2nd quarter 2000

3rd quarter 2000

4th quarter 2000

EARS
Satellite Data for Water and Food
Validation in Yellow River basin
1.5 m air temperature validation
Net radiation validation

Net radiometer

EARS
Satellite Data for Water and Food
EWBMS and ground measured net radiation

Scattergram 4 NR-Lite stations
Sensible heat flux validation
Ears Satellite Data for water and food

The role of earth observation in water resources management, Rotterdam, May 20th, 2009

EWBMS and LAS sensible heat flux

Jingchuan - 2006

Xinghai - 2007

EWBMS

LAS
Rainfall and water budget validation
Comparison reported and estimated rainfall

Daily Rainfall Scatter Plot, Average of 5 northern and western UYRB stations

Daily Rainfall Scatter Plot, Average of 5 southeastern UYRB stations
Water budget & discharge

Net precipitation 5 days-floating average

River discharge at Tangnaihai

Cumulative evapotranspiration
Cumulative net precipitation
Cumulative precipitation
Cumulative river discharge

Net precipitation and river discharge graphs over a period from July 2005 to July 2008.
Drought monitoring
Meteorological drought

2008年全国降水量距平图（单位 %）

Rainfall deviation from average (SFA-CNDMC)
Agricultural drought (1)

- 2 monthly relative evapotranspiration (EDI)
- Proportional to crop growth
- Proportional to plant available water (PAW)

\[PAW \approx 0.35 \text{ RE} \]
Agricultural drought during 2008

RE May-June

RE July - August
Hydrological drought

CWR = Precipitation – Actual evapotranspiration

Subcatchment water resources in 2007-2008 hydrologic year
Flow forecasting

UNESCO-IHE

The Role of Earth Observation in Water Resources Management, Rotterdam, May 20th, 2009
The Role of Earth Observation in Water Resources Management, Rotterdam, May 20th, 2009

Yellow River sub-catchments

Upper Yellow River

Second largest river basin of China

Wei River

EARS Satellite Centre for Weather and Floods
Large Scale Hydrological Model (LSHM)

Land component:
2-dimensional diffusion process

River flow component:
Muskingum-Cunge routing

EWBMS Rainfall Actual Evaporation
Flow simulation
Upper Yellow River
Flow forecast performance UYRB

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Hydrological station</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jimai</td>
</tr>
<tr>
<td>R^2</td>
<td>0.8</td>
</tr>
<tr>
<td>RMSE (m3/s)</td>
<td>55.5</td>
</tr>
<tr>
<td>RRMSE</td>
<td>0.45</td>
</tr>
<tr>
<td>BIAS (m3/s)</td>
<td>21.9</td>
</tr>
<tr>
<td>% volume error</td>
<td>17.9</td>
</tr>
<tr>
<td>Drainage area (km2)</td>
<td>45,800</td>
</tr>
</tbody>
</table>
One day forecast at Tangnaihai (basin outlet)

RMSE = 161 m³/s RRMSE = 0.17
COE = 0.84 R² = 0.93
Conclusions

- EWBMS is an abundant climate data source
- Water resources monitoring
- Meteorological, agricultural and hydrological drought monitoring
 - Including: Plant available soil water content
- Flow forecasting through LSHM
- Good performance and validation results
- EWBMS and LSHM are fully operational
- Need: High res. Geostationary Hydrological Satellite (HGHS: 0.5 km)
Thank you for your attention

More: www.ears.nl