Satellite Based Water Monitoring and Flow Forecasting System in the Yellow River Basin

Andries Rosema, Marjolein de Weirdt, Steven Foppes (EARS) Raymond Venneker, Shreedar Maskey (Unesco-IHE)

Contents of the presentation

- Introduction to the EWBMS
- Derivation and examples of data products
- Validation of EWBMS data
- Drought monitoring
- Flow simulation and forecasting
- Conclusions

Energy and Water Balance Monitoring System (EWBMS)

Surface albedo (%)

Air temperature mapping

Observation height air temperature map

Precipitation monitoring

Precipitation processing

- Based on cloud detection, height classification
- Regression between cloud frequencies and GTS rainfall
- Rainfall
- Snow storage (if T<0)

Precipitation

3rd quarter 2000

4th quarter 2000

Evapotranspiration Monitoring

Energy balance processing

Global and net radiation Sensible heat flux Latent energy flux ↓ Actual evaporation Snowmelt $I_n = (1-A) I_{sol} I_{ter}$ $H = \alpha (T_0 - T_a)$ $LE = I_n - H$

Actual evapotranspiration

The Role of Earth Observation in Water Resources Management, Rotterdam, May 20th, 2009

Validation in Yellow River basin

1.5 m air temperature validation

Satellite Data for Water and Food

EWBMS and ground measured net radiation

EARS Satellite Data for Water and Food

Sensible heat flux validation

EWBMS and LAS sensible heat flux

EARS Satellite Data for Water and Food

Comparison reported and estimated rainfall

Drought monitoring

Rainfall deviation from average (SFA-CNDMC)

Agricultural drought (1)

- 2 monthly relative evapotranspiration (EDI)
- Proportional to crop growth
- Proportional to plant available water (PAW)

PAW ≈ 0.35 *RE*

Subcatchment water resources in 2007-2008 hydrologic year

Flow forecasting

UNESCO-IHE

The Role of Earth Obsertvationgiolia Matter Reselengers Managers Analy Rollen dam, May 20th, 2009

Large Scale Hydrological Model (LSHM)

Land component: 2-dimensional diffusion process **<u>River flow component</u>:** Muskingum-Cunge routing

The Role of Earth Observation in Water Resources Management, Rotterdam, May 20th, 2009

Flow forecast performance UYRB

Criterion	Hydrological station			
	Jimai	Maqu	Jungong	Tangnaihai
R^2	0.8	0.82	0.8	0.8
RMSE (m^3/s)	55.5	128.2	162.3	189.3
RRMSE	0.45	0.38	0.37	0.39
BIAS (m ³ /s)	21.9	-2.1	2.6	-3.24
% volume error	17.9	-0.61	0.6	-0.67
Drainage area (km ²)	45,800	86,725	97,825	118,725

One day forecast at Tangnaihai (basin outlet)

Conclusions

- EWBMS is an abundant climate data source
- Wate resources monitoring
- Meteorlogical, agricultural and hydrological drought monitoring

- Including: Plant available soil water content

- Flow forecasting through LSHM
- Good performance and validation results
- EWBMS and LSHM are fully operational
- Need: High res. Geostationary Hydrological Satellite (HGHS: 0.5 km)

Thank you for your attention

More: www.ears.nl

