The SREB is part of the Belt and Road Initiative, being a development strategy that focuses on connectivity and cooperation between Eurasian countries. Essentially, the SREB includes countries situated on the original Silk Road through Central Asia, West Asia, the Middle East, and Europe. The initiative calls for the integration of the region into a cohesive economic area through building infrastructure, increasing cultural exchanges, and broadening trade. A major part of the SREB traverses Asia’s high-altitude areas, also referred to as the Third Pole or the Asian Water Tower. In the light of the planned development for the SREB traversing the Third Pole and its immediate surroundings, the “Pan-Third Pole Environment study for a Green Silk Road (Pan-TPE)” program will be implemented.

The project will assess the state and fate of water resources in the region under following research themes:

1. Observed and projected Pan-TPE climate change
2. Impacts on the present and future Water Tower of Asia
3. The Green Silk Road and changes in water demand
4. Adaptation for green development

HI-AWAREHI-AWARE is one of four consortia of the Collaborative Adaptation Research Initiative in Africa and Asia (CARIAA). HI-AWARE aims to contribute to enhanced adaptive capacities and climate resilience of the poor and vulnerable women, men, and children living in the mountains and flood plains of the Indus, Ganges, and Brahmaputra river basins through the development of robust evidence to inform people-centred and gender-inclusive climate change adaptation policies and practices for improving livelihoods.

HI-AWARE will:

  • Generate scientific knowledge on the biophysical, socio-economic, gender, and governance conditions and drivers leading to vulnerability to climate change;
  • Develop robust evidence to improve understanding of the potential of adaptation approaches and practices, with an explicit focus on gender and livelihoods;
  • Develop stakeholder-driven adaptation pathways based on the up- and out-scaling of institutional and on-the-ground adaptation innovations;
  • Promote the uptake of knowledge and adaptation practices at various scales by decision-makers and citizens; and
  • Strengthening the interdisciplinary expertise of researchers, students, and related science-policy-stakeholder networks.

HI-AWARE study sites

HI-AWARE will focus its activities in 12 sites, representing a range of climates, altitudes, hydro-meteorological conditions, rural-urban continuum, and socio-economic contexts in four study basins: the Indus, Upper Ganga, Gandaki and Teesta. It will conduct research in these sites, including modeling, scoping studies, action research, and randomized control trials. It will test promising adaptation measures in observatory labs at the sites for out-scaling and up-scaling. It will also conduct participatory monitoring and assessment of climate change impacts and adaptation practices to identify:

  • Critical moments – times of the year when specific climate risks are highest and when specific adaptation interventions are most effective;
  • Adaptation turning points – adaptation turning points – when current policies and management practices are no longer effective and alternative strategies have to be considered; and
  • Adaptation pathways – sequences of policy actions that respond to adaptation turning points by addressing both short term responses to climate change and longer term planning.

FutureWater’s main tasks focus on biophysical drivers and conditions leading to vulnerability to climate change. Key tasks are to:

  • Develop detailed mountain specific and basin scale climate change scenarios;
  • Improve cryosphere-hydrological modeling to assess significant shifts in flow regimes with an aim to develop water demand and supply scenarios as well as improve and apply water-food impact models; and
  • Better understand climate change impacts on extremes (heat, floods, drought),and quantify these extremes from climate models and subsequently impact models.

Global warming is considered as one of the major threats for the world’s population and coping with it may be one of the largest challenges for this century. Multiple attempts to streamline global policy on climate change mitigation have been made over the past decades, and the “Paris Agreement” which was signed at the 21st Conference of the Parties in 2015 is considered a major breakthrough in formulating adequate measures to tackle climate change. Governments agreed on “a long-term goal of keeping the increase in global average temperature to well below 2°C above pre-industrial levels”, and “to aim to limit the increase to 1.5°C, since this would significantly reduce risks and the impacts of climate change”. In response to this development, the Intergovernmental Panel on Climate Change (IPCC) will publish a Special Report on global warming of 1.5 °C above pre-industrial levels, and is gathering scientific content for this report.

Flooding in Bangladesh.

However, scientific evidence of the impacts of a 1.5 ˚C global warming, and more importantly, the differences in impacts between a 1.5 ˚C and a 2 ˚C global warming, is lacking. Therefore, the scientific community has been mobilized to provide this scientific evidence as input to the special report. FutureWater leads a regional assessment quantifying the impacts of a 1.5 ˚C versus a 2 ˚C global warming for a major global climate change hotspot: the Indus, Ganges and Brahmaputra river basins in South Asia.

The Ganges is the most populated river basin in the world and is home to half the population of India including two-thirds of the nation’s poor people. The basin provides over one-third of the available surface water in India and is the focus of over half the national water use – 90 percent of this being in irrigation.

The ecological health of the Ganga River and some if its tributaries has deteriorated significantly as a result of high pollution loads, high levels of water abstraction for consumptive use (mostly for irrigation but also for municipal and industrial uses), and other flow regime and river modifications caused by water resources infrastructure (dams and barrages for diverting and regulating the river and generating hydropower).

Water management is largely undertaken at the state level, and there has been no basin-wide effort for volumetric water planning and allocation. With increasing demand for water in multiple sectors a more strategic approach is now warranted. The Government of India has committed to an ambitious goal of rejuvenating the Ganga and is committing significant funds to address the problem. However, in addition to the technical complexity and scale, Ganga rejuvenation is an inherently “wicked problem” given the wide diversity of stakeholder values and perspectives and the political and institutional dimensions that come from distributed responsibilities across multiple jurisdictions and institutions.

The World Bank has assigned Deltares and its partners AECOM India and FutureWater to carry out the project ”Analytical Work and Technical Assistance to support Strategic Basin Planning for Ganga River Basin in India”.

The key objectives of this project are:

  • Significantly strengthen the capability of relevant central and state government agencies to undertake comprehensive evidence-based strategic basin planning for the Ganga River basin
  • Develop, document and disseminate (through detailed analytical work and stakeholder engagement) a set of plausible scenarios that balance significantly improving the health of the river and maintaining an acceptable level of economic productivity;
  • Build stronger and more accessible information and knowledge base to guide on-going dialogue around and management of the Ganga River basin; and
  • Establish on-going multi-stakeholder engagement processes in the basin to support strategic basin planning.

Ganges1

These objectives will be achieved by:

  • Developing a detailed and robust water resources planning model for the entire Ganga basin in India and training central and state government engineers and planners in its use;
  • Characterizing and analysing surface-groundwater interactions across the basin using this information to refine the river modelling;
  • Undertaking a multi-scale environmental flow assessment across the basin and using these assessments to inform the scenario modelling;
  • Developing, modelling and disseminating a series of plausible scenarios that explore alternative options for improving water management including improving river health;
  • Establishing and facilitating a multi-stakeholder consultation process (inside and outside of government) to guide and share the work above; and
  • Ensuring wide access to the models and analyses and quality documentation of these.

Warming of the climate system is unequivocal. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, sea level has risen, and the concentrations of greenhouse gases have increased. The Himalayan region (after Antarctica and the Arctic) has the third largest amount of ice and snow in the world, and is exceptionally vulnerable. The various Global Climate Models (GCM) predict very similar future temperature trends for the region, but projections of future precipitation patterns differ widely. As a consequence, the need for increased knowledge about future climate change remains high. The main focus of GCMs thus far was on temperature increases and potential changes to the hydrological cycle. The overall tendency that has emerged is that wetter regions are likely to become wetter and drier regions drier. Increased scientific knowledge, coupled with recent weather events, show that changes in hydrological extreme events can be substantial and the geographical and temporal resolution of predicted changes remains low in many areas.

For Statkraft, as the largest generator of renewable energy in Europe and a leading company in hydropower internationally, an understanding of future changes to the hydrological cycle and its uncertainty is crucial for effective business planning. Investment decisions regarding the business strategy for the next 50 years depend on accurate predictions of climate change impacts on inflow over that period.  In addition, changing probabilities and magnitudes of extreme events can put additional risk on infrastructure (dams and hydropower plants) or on other crucial infrastructure (roads and transmission lines).  Statkraft’s intention to grow in the region makes it necessary to assess short, medium and long-term impacts, risks and opportunities resulting from climate change, to ensure sustainable management of the water resources for all stakeholders. Currently, Statkraft’s main business focus lies with northern India (mainly the state of Himachal Pradesh) and Nepal, while Bhutan and Myanmar might be areas of future business development as well.

Kaligandaki Hydro power located in Nepal.

Through the International Centre for Integrated Mountain Development (ICIMOD), the inter-governmental learning and knowledge sharing Centre serving the eight regional member countries of the Hindu Kush Himalayas (HKH), FutureWater provided a comprehensive review study on climate change and the impacts on cryosphere, hydrological regimes and glacier lakes in the Indus, Ganges, and Brahmaputra river basins. This review study was done in the context of future hydropower development in the region.

The Indus basin is a densely populated area and water supplied by the Indus River is extremely important for agriculture, domestic use and hydropower production. The Indus is largely dependent on melt water generated in the Himalayas, Karakoram and Hindu Kush mountains. Understanding of the hydrological regimes in the mountainous Upper Indus basin (UIB) is essential for water resources management in the region.

It is highly likely that future climate change will impact future water availability in the Upper Indus river basin. Temperature increases and changes in the timing, magnitude, and phase of precipitation will alter the timing and contribution of snow and ice melt.

High-resolution gridded meteorological datasets, which capture the spatial variability of precipitation, are critical for modelling the hydrology of high-mountain regions. In the Upper Indus Basin (UIB), previous modelling studies have demonstrated that snow and glacier melt are major contributors to stream discharge, and on daily or seasonal scales can play even larger roles. However, hydrologic models suffer from a lack of gridded input climate data which accurately reflects the topographic complexity and spatial variability in precipitation. Improvements to existing gridded datasets using high-elevation station data will increase the reliability of hydrological models in the region. FutureWater’s Spatial Processes in Hydrology (SPHY) model will be updated and recalibrated to improve understanding of the stream flow composition in the basin and to provide better estimates of the future water availability, by forcing the model with downscaled CMIP5 general circulation models.

Summarizing, the three main goals of the project are:

  • To develop a high-quality meteorological forcing dataset (temperature and precipitation) for the UIB by merging existing gridded datasets and high-altitude climate observations.
  • To improve the existing large-scale SPHY model by including a reservoir scheme and recalibrating the model with additional observations (geodetic mass balance, time series of river runoff, time series of reservoir inflow data).
  • To use the recalibrated SPHY model to examine shifts in the basin hydrology under CMIP5 climate change scenarios.

Water is becoming an increasingly critical factor in Asia. The catchments of Hindu – Kush Himalayan (HKH) are a source of a significant portion of this water. Glaciers are a component of the HKH water budget. There is general agreement that a widespread retreat of the global ice cover has been occurring since at least the late 1800s. However, a consensus view of the significance of this retreat in terms of factors determining glacier mass balance, or the resulting water resources and general environmental impacts has not been reached for the HKH mountains. It is believed that only a combined effort of local observation, remote sensing and simulation modeling can lead to a better understanding of what’s happening. Especially the modeling is essential to provide projections for the future.

FutureWater has conducted a review of current state of knowledge in (i) climate change datasets and downscaling used for glacier and high mountain modelling, (ii) glacier and snow contribution to river runoff in the HKH region, (iii) hydrological modelling studies used for glacier and high mountain environments and, (iv) downstream impacts of climate change on the HKH region.

The concept of using simulation models in scenario analysis.
Importance of Himalayan’s rivers for people.

ICIMOD is the implementing agency for the Himalayan Climate Change Adaptation Programme (HICAP) that runs from January 2011 to December 2015. HICAP addresses climate change adaptation challenges across different related disciplines such as water resources, ecosystem services, food security, vulnerability and gender. Part of the project is related to the generation of water availability scenarios from upstream river basins that are primarily characterized by snow and glacial melt. ICIMOD has contracted FutureWater to generate these scenarios based on a high resolution hydrological model that FutureWater has developed. The project runs from January 2012 until June 2013. FutureWater will generate climate change and water availability scenarios for the upstream parts of the Indus, Ganges and Brahmaputra river basins.

With the overall goal to improve our knowledgebase on climate change impact on water availability and demand in the upper parts of the Indus, Ganges and Brahmaputra basins, the specific objectives of the proposed study are to:

  • Assess climate change scenarios and develop water availability scenarios corresponding to base and future climate scenarios at sub-basin and catchment scales in the three basins
  • Improve our understanding of the partitioning of runoff contribution from different natural sources (snow, glacier, rainfall and base flow)
  • Detailed analysis of uncertainty of water availability scenarios and assessment of hydropower potential for five pilot catchments