The UNDP is implementing the project “Conservation and sustainable management of lakes, wetlands, and riparian corridors as pillars of a resilient and land degradation-neutral Aral basin landscape supporting sustainable livelihoods” to enhance the resilience of the ecosystems and livelihoods in Lower Amudarya and Aral Sea Basin (LADAB) through land degradation neutrality (LDN) compatible integrated land-water management.

This assignment contributes to water allocation analysis and the development of water supply scenarios for irrigated agriculture and biodiversity conservation reports. The services consist in:

  1. Consulting with project experts, government agencies, local communities, and other relevant stakeholders
  2. Develop a hydro-economic water allocation model for the lower Amu Darya basin using WEAP
  3. Explore different scenarios for irrigated agriculture and biodiversity conservation, considering climate change, to strike a balance between sustainable agricultural practices and conservation of biodiversity and ecosystems and (iv) build capacity and support project experts and relevant stakeholders on water allocation analysis and modelling.
Stakeholders consultation in Nukus, Uzbekistan

The project prepares robust climate mitigation and adaptation pipelines aligned with the Paris Agreement and responsive to DMCs climate change priorities. The TA will support interventions on departmental, sectoral and country levels with key activities including development of a regional strategy, upstream climate assessments, climate pipeline development, government dialogues and capacity building. As part of this project, FutureWater conducts a regional climate risk assessment for ten countries. This includes an assessment of baseline and future climate hazards, exposure and vulnerability and addressing sectoral impacts and adaptation options for a wide range of sectors. In addition country profiles summarizing climate risks for the ten countries are generated. The reginal climate risk assessment feeds into the climate strategy.

With a target to increase the gross domestic product from $70 billion in 2021 to $160 billion by 2030, the Government of Uzbekistan is taking steps to ensure that it will be able to meet the spike in electricity demand which is expected to double by 2030. Initiatives include installing an additional 17 gigawatts capacity to the existing available capacity of 12.9 GW, out of which 8 GW will be from renewable energy projects. Currently, the distribution system in Uzbekistan comprises of more than 260,000 kilometers of 0.4-110 kV networks, 1,655 substations and more than 86,000 transformer points. However, more than 50% of the lines have been operational for 30 years and 30% of the substation transformers are in dire need of rehabilitation. Therefore, the Asian Development Bank is working closely with the Joint Stock Company Regional Electric Power Networks (JSC REPN) to: i) Rehabilitate and modernize the distribution substations, ii) Rehabilitate associated distribution lines, and iii) Enhance the institutional capacity for financial sustainability and climate resiliency.

These rehabilitation efforts will also take into account and address the growing impacts of climate change in the region. For this, FutureWater has been assigned to carry out a climate risk and adaptation assessment (CRA). FutureWater will make use of state-of-the-art downscaled Coupled Model Intercomparison Project Phase 6 (CMIP6) ensembles, and other relevant hazards and local information to develop this CRA. Insights from the CRA will be used to devise adaptation strategies. Additionally, FutureWater will be reviewing the existing meteorological monitoring network and recommending additional potential monitoring sites for improved surveillance in the country. To further assist the Government of Uzbekistan actualize its second Nationally Determined Contribution (NDC) agenda which seeks to reduce greenhouse gas (GHG) emissions per unit of GDP by 35% (compared to the level in 2010), by the year 2030, FutureWater will also develop a GHG account and prepare a Paris Agreement alignment assessment.

Over the last decades, efficient water resources management has been an important element of EU’s water policies, a topic that is addressed with renewed attention in the revised 2021 EU Adaptation Strategy, which lists the need for a knowledge-based approach towards water-saving technologies and instruments such as efficient water resources allocation. The IPCC special report on oceans and the cryosphere in a changing climate (2019) highlights the combination of water governance and climate risks as potential reasons for tension over scarce water resources within and across borders, notably competing demands between hydropower and irrigation, in transboundary glacier- and snow-fed river basins in Central Asia.

WE-ACT’s innovative approach consists of two complementary innovation actions: the first is the development of a data chain for a reliable water information system, which in turn enables the second, namely design and roll-out of a decision support system for water allocation. The data chain for the reliable water information system consists of real-time in-situ hydrometeorological and glaciological monitoring technology, modelling of the water system (including water supply and demand modelling and water footprint assessments) and glacier mass balance, data warehouse technology and machine learning. The roll-out of the DSS for climate-risk informed water allocation consists of stakeholder and institutional analyses, water valuation methods, the setup of the water information system to allow for a user-friendly interface, development of water allocation use cases, and feedback on water use through national policy dialogues.

The work of FutureWater within the WE-ACT study will focus on estimating the water demand and water footprints of the different users and activities within the Syr Darya river basin. Therefore, the effects of water allocation on water footprints, unmet water demand and environmental flow violations will be evaluated using a set of hydrological models such as SPHY and Water Allocation models (WEAP). This will be done for both the status quo and future scenarios.

For more information you can visit the WE-ACT project website.

With over 1,850 km of 500kV lines, 6,200 km of 220kV lines and 15,300 km of 110kV lines, the power transmission system in Uzbekistan is facing challenges with respect to deteriorating infrastructure and unreliable power supply. To address these issues, the Asian Development Bank (ADB) is assisting the Government of Uzbekistan through the “Uzbekistan Power Transmission Improvement Project” which aims to: i) improve the power transmission network capacity and reliability in the northwest region of the country, ii) reduce transmission losses, and iii) improve the operational efficiency of the power sector. This will be done through the i) construction of a new 220kV single-circuit overhead transmission line spanning over 364 km, ii) expansion, rehabilitation, and construction of 3 substations and iii) capacity building and institutional development.

Additionally, given the growing impacts of climate change in the region, FutureWater has been assigned to carry out a climate risk and adaptation assessment for 12 transmission lines and 2 substations in the country. FutureWater will make use of state-of-the-art downscaled Coupled Model Intercomparison Project Phase 6 (CMIP6) ensembles, and other relevant hazards and local information to develop this CRA. The insights from this assessment will enable ADB to justify climate financing for further enhancing the climate resilience of the grid system. Moreover, through the adoption of climate-resilient technologies and adaptation measures based on the climate risk assessment, the country will be able to cut down on their GHG emissions and ensure uninterrupted power supply in light of a changing climate. This will be complimented by deriving adaptation costs to justify the need for climate financing. In addition, FutureWater will also be reviewing the existing meteorological monitoring network and recommending additional potential monitoring sites for improved surveillance in the country.

Uzbekistan is highly sensitive to climate change which will cause changes in the water flows and distribution: water availability, use, reuse and return flows will be altered in many ways due to upstream changes in the high mountain regions, but also changes in water demand and use across the river basin. The resulting changes in intra-annual and seasonal variability will affect water security of Uzbekistan. Besides, climate change will increase extreme events which pose a risk to existing water resources infrastructure. An integrated climate adaptation approach is required to make the water resources system and the water users, including the environment, climate resilient.

This project will support the Ministry of Water Resources (MWR) of Uzbekistan in identifying key priorities for climate adaptation in the Amu Darya river basin and support the identification of investment areas within Amu Darya river basin. The work will be based on a basin-wide climate change risk assessment as well as on the government priorities with an explicit focus on reducing systemic vulnerability to climate change.

The project will undertake:

  • Climate change risk analysis and mapping on key water-related sectors, impacts on rural livelihoods, and critical water infrastructures.
  • Climate change adaptation strategic planning and identify barriers in scaling up adaptation measures at multiple scales with stakeholder consultation and capacity building approach.
  • Identification of priority measures and portfolios for integration into subproject development as well as for future adaptation investment in the Amu Darya river basin. The identification will cover shortlisting of potential investments, screening of economic feasibility, and potential funding opportunities.

FutureWater leads this assignment and develops the climate risk hotspot analysis, and coordinates the contribution of international and national experts, as well as the stakeholder consultation process.

The Asian Development Bank (ADB) seeks to develop a new climate and disaster risk screening and assessment tool to replace the current tool in use. The next generation tool will embody lessons learned over almost ten years of ADB activities aimed at improving the climate and disaster resilience of ADB investments, including inputs from a wide range of ADB staff and consultants.

The tool will be designed to provide scientifically credible and context specific screening of projects for risks associated with climate, climate change and a range of geophysical hazards at project concept stage in order to guide subsequent activities, including the design of adaptation and resilience strategies and interventions.

The next generation tool will provide greater access to the underlying data, greater flexibility in user-initiated exploration of specific risks, greater scope for screening more spatially complex projects such as road networks and power grids. The tool will also include a module that allows a light-touch Climate Risk and Adaptation (CRA) assessment to be produced, semi-automatically. Future modules will support Paris Alignment and automated completion of applicable sections of the adaptation (BB2) assessment.and will be expanded to provide a basis for more detailed climate risk and adaptation assessments as appropriate.

The methodology behind the tool is being developed by a specialized team of experts in which FutureWater provides expertise on climate and hazard data, climate model projections, and climate risk assessments. The methodology is based on an iterative and consultative process with an external expert group, ADB staff and experts on software development and user experience design. The methodology defines the risk calculation based on hazard, exposure and vulnerability spatial and project data, and user inputs.
The tool will also become available for ADB member countries. Two pilots in Laos and Uzbekistan will make sure that the tool will align with their requirements and datasets.

FutureWater is involved in testing the methodology in these pilot countries and developing example risk screening and CRA reports.

Recently, the Central Asia Regional Economic Cooperation (CAREC) Program introduced agriculture and water as a new cluster in its strategic framework. Recognizing the complexities of the water sector and the existing landscape of cooperation activities, the strategic framework proposes a complementary approach that uses the strengths of CAREC to further promote dialogue on water issues. A scoping study was commissioned, supported by the Asian Development Bank (ADB), to develop a framework for the Water Pillar for further consideration by the governing bodies of CAREC. It was agreed that the initial focus of the Water Pillar should be on the five Central Asian states with consideration given to expanding to other CAREC member countries over time.

The objective of the study is to develop the scope of a Water Pillar Framework that includes a roadmap of national development interventions for each of the five Central Asian Republics that responds to the prevailing challenges and opportunities in water resources management.

The framework will be derived from three specific outputs:

  • Output 1: Projection of future availability and demand for water resources for the Central Asia region up to 2050 including implications of climate change.
  • Output 2: Identification of future water resources development and management opportunities in the form of a sector specific framework for water resources infrastructure taking into consideration sustainability issues through a comparative assessment of cost recovery mechanisms and operation and maintenance (O&M) practices.
  • Output 3: Preparation of a framework for policy and institutional strengthening that addresses common themes and issues related to national water resources legislation and the capacity and knowledge development needs of water resources agencies with an emphasis on economic aspects and sustainable financing.

For this work, FutureWater provides key inputs on the climate change and water resources aspects, including desk review, stakeholder consultations across the five regions and across all sectors, and analysis of climate change risks and identification of adaptation options that have a regional dimension and can be taken up through regional or bilateral cooperation. Following the scoping study, FutureWater supports in the identification of priority activities based on an extensive consultative process in the region, with emphasis on climate resilience. Also it supports the identification of potential water pillar development partners and financing opportunities, including steps needed to qualify for climate finance

The Paris Agreement requests each country to outline and communicate their post-2020 climate actions, known as their NDCs. These embody efforts by each country to reduce national emissions and adapt to the impacts of climate change. As ratifying parties, Armenia, Georgia and Uzbekistan must therefore outline how they intend to implement their NDCs and provide information on what the focus of this spending will be. To support this effort, the Asian Development Bank (ADB) is implementing a knowledge and support technical assistance cluster which will help enhance capacities of developing member countries (DMCs) in meeting their climate objectives by assisting in refining and translating nationally determined contributions (NDCs) into climate investment plans.

In this work package, ADB aims to support Georgia, Armenia, and Uzbekistan with the implementation of their NDCs through developing urban climate assessments (UCAs) and mainstreaming low carbon and climate resilience measures into urban planning processes. FutureWater contributed to this effort by supporting knowledge creation in relation to climate change and adaptation which will help each country to make more informed climate investment decisions.This was accomplished by conducting analysis of downscaled climate model ensembles for different climate change scenarios and synthesising data related to urban climate risk.

Climate change trend assessments were conducted using the NASA-NEX downscaled climate model ensemble combined with ERA-5 climate reanalysis products. To determine climate risk at the urban level, a number of openly available datasets were analysed and compiled using a spatial aggregation approach for 16 cities in the area. Results were presented as user-friendly climate risk profiles at the national and urban scales, allowing for insights into climate trends and risks over the coming century. These will be presented to non-expert decision makers to help support Armenia, Georgia and Uzbekistan develop targeted and informed NDCs.

The project should increase agricultural water use productivity in the selected agricultural districts in Uzbekistan through a threefold approach: (i) climate resilient and modernized I&D infrastructure to improve measurement, control and conveyance within existing systems; (ii) enhanced and reliable onfarm water management including capacity building of water consumers’ associations (WCAs), physical improvements for land and water management at the farm level and application of high level technologies for increased water productivity; and (iii) policy and institutional strengthening for sustainable water resources management. This will include strategic support to the Ministry of Water Resources (MWR) and its provincial, basin and district agencies.

The project supports the Strategy of Actions on Further Development of Uzbekistan (2017), which includes: (i) introduction of water saving technologies and measures to mitigate the negative impact of climate change and drying of the Aral Sea; (ii) further improvement of irrigated lands and reclamation and irrigation facilities; and (iii) modernization of agriculture by educating areas of cotton and cereal crops to expand horticulture production.

FutureWater focuses on the climate risk and adaptation assessment that accompanies the feasibility projects, and will analyze climate trends, climate model projections, climate impacts on the projects and assess adaptation options.

Watch the video below to learn more about the management of Climate Adaptive Water Resources in the Aral Sea Basin in Uzbekistan (source: ADB)