In 2016, FutureWater released a new dataset: HiHydroSoil v1.2, containing global maps with a spatial resolution of 1 km of soil hydraulic properties to support hydrological modeling. Since then, the maps of the HiHydroSoil v1.2 database have been used a lot in hydrological modeling throughout the world in numerous (scientific) projects. A few examples of the use of HiHydoSoil v1.2 are shown in the report.

Important input of the HiHydroSoil database is ISRICS’ SoilGrids database: a high resolution dataset with soil properties and classes on a global scale. In May 2020, ISRIC has released the latest version (v2.0) of its Soilgrids250m product. This release has made it possible for FutureWater to update its HiHydroSoil v1.2 database with newer, more precise and with a higher resolution soil data, which resulted in the development and release of HiHydroSoil v2.0.

Soil information is the basis for all environmental studies. Since local soil maps of good quality are often not available, global soil maps with a low resolution are used. Furthermore, soil maps do not include information about soil hydraulic properties, which are of importance in, for example, hydrological modeling, erosion assessment and crop yield modelling. HiHydroSoil v2.0 can fill this data gap. HiHydroSoil v2.0 includes the following data:

  • Organic Matter Content
  • Soil Texture Class
  • Saturated Hydraulic Conductivity
  • Mualem van Genuchten parameters Alfa and N
  • Saturated Water Content
  • Residual Water Content
  • Water content at pF2, pF3 and pF4.2
  • Hydrologic Soil Group (USDA)

Download HiHydroSoil v2.0

The HiHydroSoil v2.0 database can be accessed after filling the brief request form below. A download link to the full dataset will then be provided. The HiHydroSoil v2.0 dataset is organized in two folders, one containing the original data for each of the six depths, and one with the aggregated subsoil and topsoil data. All data layers are delivered in geotiff raster format.

Important! To avoid lengthy download times, the data layers originally consisting of float data type were multiplied by a factor of 10,000, and subsequently converted to integer type. It is therefore required to translate the data to the proper units by multiplying with 0.0001. These steps are also described in the readme file delivered with the data.

To meet the challenges of regional development and climate change that the Panama Canal river basin faces, the Panama Canal Authority (ACP) has launched the preparation of a land use plan. For this plan, a roadmap will be established (Green Pathway 2050) that should secure water for the population, sustains socio-economic development, enables reliable operations of the Panama Canal, and preserves the ecosystem services of the basin.

The technical cooperation offered through this project will allow the ACP and the IADB to design an intervention implementation program at the strategic and project level to promote the sustainable development of the river basin.

The project is executed in 4 phases (see Figure 1):

  1. Diagnosis: sectoral and comprehensive characterization of the current river basin and regional planning
  2. Prospects: a robust decision making methodology will be applied to quantify the vulnerability of the current and possible future states of the system, considering climate change, socio-economic development scenarios and climate adaptation.
  3. Strategy development: the so-called “Green Pathway 2050” will be developed together with stakeholders, including priority actions, mitigation and adaptation strategies.
  4. Land Use Plan: the plan will address the implementation aspects related to regional zoning, pre-feasibility studies, and a monitoring and evaluation program
Figure 1. Phases of the Project “Formulation of the Land Use Plan for the Panama Canal river basin”.

FutureWater is responsible for assessing, in collaboration with stakeholders, realistic land use scenarios considering the uncertainties imposed by climate change and non-climate factors. A Robust Decision Making (RDM) approach will be applied for this purpose. The work will include the development of a supply-demand model using the WEAP tool and a technical training of ACP staff. Climate change vulnerabilities will be assessed through a bottom-up approach, including stakeholders´inputs from the start of the analysis. The climate change-uncertainties of the land use scenarios will be visualized to stakeholders and a realistic sub-set of scenarios, including adaptation options, will be produced.

Please visit this website for more information about the project:

The Ridge to Coast, Rain to Tap: Sustainable Water Supply Project (R2CR2T) is an integrated approach to addressing flooding in the Cagayan River basin on Mindanao in the Philippines. R2CR2T is a Public Private Partnership led by VEI together with the partners COWD (Cagayan de Oro Water District), FITC, UTPI/Hineleban Foundation Inc. (HFI), Philippines- and Netherlands Red Cross, Cagayan de Oro River Basin Management Council (CDORBMC), and Wetlands International. R2CR2T is funded by RVO through the Sustainable Water Fund programme.

The Cagayan River Basin is characterized by an upstream mountainous area with steeply sloping terrain towards downstream Cagayan de Oro city. Upstream deforestation and land degradation are known to increase risk of flooding in the city, which is at present already at a high level. One expected outcome of R2CR2T is to have an enabling environment for stakeholders, both private and public sector, to undertake activities related to sustainable land management in the Cagayan River Basin. A Decision Support Tool (DST) for identifying critical areas and approaches for rehabilitation and its benefits regarding flood risk reduction, soil erosion reduction, and enhancing dry season flows, will be developed based on a scientifically-sound hydrological model for the watershed of the Cagayan River.

FutureWater was hired to advise on the development of the DST and hydrological model, critically review the quality and applicability of (intermediate) outputs by the local team and their service providers, and provide an external and international ‘helicopter view’ on the eco-hydrological aspects of the project. In a general sense, FutureWater supports the R2CR2T project team to maximize the impact of the DST will have for the CDORB region and stakeholders.

Cambodia is currently improving in economic standing, however the benefits of this are largely contained to urban areas. As a major contributor to GDP, ensuring the sustainability of Cambodia’s agricultural sector is highly important, especially when coupled with the increasing awareness of the dangers of climate change. Access to water for agriculture, fisheries and domestic supply is an issue, with many rural communities competing for resources. Coupled with the effects of flood and drought activity in recent years, the need for adequate and reliable water resource management in rural, agricultural areas is prominent. This project focuses on the North- Western Cambodian provinces of Oddar Meanchey (OMC) and Banteay Meanchey (BMC) and the neighbouring North-Eastern Thai provinces of Surin and Sisaket.

In order to protect rural livelihoods and maintain agricultural production, communities must be supplied with permanent and regulated water year-round. Analysis of recent flood and drought histories and their effects in the provinces are first necessary to determine the most vulnerable areas both in terms of agriculture and households. In addition, water resource assessments of supplies and demand will identify the most crucial areas to ensure supplies are increased and sustained both for crops and domestic use. Socio-economic studies will also ensure ‘cross- cutting’ issues are considered in WR planning, such as: gender, economic vulnerability and cultural factors related to WRM. Furthermore, meetings with stakeholders at multiple levels can address issues in water infrastructure, alongside assessment of the capacities of those managing monitoring systems for example. From this, future recommendations for improvements in infrastructure can be made with an awareness of the necessary knowledge capacities to ensure proper maintenance and sustainability.

Initially, an analysis of the current water resource situation in the study area will be conducted through collection of available data on water resources, flood and drought histories and socioeconomic issues in the area. Following this, areas for more detailed analysis will be established and strategies to improve WRM supporting agricultural livelihoods can be developed. FutureWater is involved in the implementation of the WEAP model, for evaluation of various water resources management strategies in the catchments under baseline and projected future conditions.

The Inle Lake in Myanmar is renowned for a number of traditional cultural and livelihood practices, which have made it one of the main attractions for Myanmar’s booming tourism industry. The lake is, however, suffering environmental degradation from the combined effects of unsustainable resource use, increasing population pressures, climate variability and rapid tourism development. UNDP is supporting the establishment of ILMA, which will have the mandate to manage conservation activities in the Inle Lake protected area.

Under this project, a set of maps will be developed and delivered to the ILMA geodatabase. Different methods, including satellite remote sensing and GIS, will be integrated to complete an updated boundary demarcation of the protected area, based on the Inle Lake watershed boundaries and recent developments in land use. Key ecosystem services of Inle Lake region will be mapped, which will inform an updated zoning (core zone, buffer zone, transition zone) of Inle Lake protected area. Workshops and bilateral meetings are organized to consult with the government stakeholders at several steps during the project, and a training workshop on ecosystem services mapping will be organized at the end of the project.

Myanmar is a country with huge water and agriculture-related challenges. However, ground data on e.g. river flows, rainfall and crop growth are only very sparsely available. This training supported by Nuffic aimed to build capacity across the water sector in Myanmar in overcoming these limitations by using Google Earth Engine, a state-of-the art tool for accessing and processing a wealth of geographical datasets. Participants from academia, higher education, and govenment agencies, attended two training sessions hosted by YTU (the main requesting organization) and implemented by FutureWater and HKV. During the intermediate period, remote support was offered to the participants via Skype, email and the dedicated Facebook page. Results of the individual assignments, which were formulated by the participants based on their personal objectives, were presented in a final symposium.

Higher educational staff was trained to achieve sustainable impact by implementing Google Earth Engine in their curricula and train a new generation of modern and well-equipped water professionals. Public sector representatives participated to obtain skills that can be directly and sustainably implemented in their respective organizations, to benefit effective and equitable water management.

Groundwater is one of the most important freshwater resources for mankind and for ecosystems. Assessing groundwater resources and developing sustainable water management plans based on this resource is a major field of activity for science, water authorities and consultancies worldwide. Due to its fundamental role in the Earth’s water and energy cycles, groundwater has been declared as an Essential Climate Variable (ECV) by GCOS, the Global Climate Observing System. The Copernicus Services, however, do not yet deliver data on this fundamental resource, nor is there any other data source worldwide that operationally provides information on changing groundwater resources in a consistent way, observation-based, and with global coverage. This gap will be closed by G3P, the Global Gravity-based Groundwater Product.

The G3P consortium combines key expertise from science and industry across Europe that optimally allows to (1) capitalize from the unique capability of GRACE and GRACE-FO satellite gravimetry as the only remote sensing technology to monitor subsurface mass variations and thus groundwater storage change for large areas, (2) incorporate and advance a wealth of products on storage compartments of the water cycle that are part of the Copernicus portfolio, and (3) disseminate unprecedented information on changing groundwater storage to the global and European user community, including European-scale use cases of political relevance as a demonstrator for industry potential in the water sector. In combination, the G3P development is a novel and cross-cutting extension of the Copernicus portfolio towards essential information on the changing state of water resources at the European and global scale. G3P is timely given the recent launch of GRACE-FO that opens up the chance for gravity-based time series with sufficient length to monitor climate-induced and human-induced processes over more than 20 years, and to boost European space technology on board these satellites.

In this project, FutureWater is in charge of a case which aims to prototype and calibrate a Groundwater Drought Index based on the G3P product, and to integrate it into InfoSequia, the FutureWater’s in-house Drought Early Warning System. The new InfoSequia component will be tested for inherent reliability and flexibility at the basin level in a total area of about 145 000 km2 in Southern Spain which largely relies on groundwater resources. This pilot region comprises three large basins (Segura, Guadalquivir and Guadiana) with many aquifers and groundwater bodies where very severe dynamics of overexploitation and mining have been identified and declared. Unsustainable groundwater development threats the water security in the region, but also the ecological status and preservation of unique and highly protected ecosystems in Europe (e.g., Doñana National Park, Daimiel National Park, Mar Menor coastal lagoon).

To visit the official G3P website, please click on this link:

Achieving water security and guaranteeing the sustainable use of water resources require series of investments at the catchment scale. Yet, competing water uses pose an initial layer of complexity about the type of intervention a catchment requires. Additionally, the nature of climatic and no-climatic uncertainties, threatening possible investments, leave decision makers with insufficient knowledge about the performance of chosen intervention options in a changing world. So, decision makers require novel tools which would facilitate the description and communication of key metrics in an uncertain future.

This project studies the sensitivity of the multipurpose Chancay-Lambayeque Basin water resources hydraulic system (Peru) to changes in climatic and no-climatic forces. A series of proposed interventions to enhance the current hydraulic system look to satisfy water supply to ~400,000 people, guarantee water for increasing irrigation activities, and maintain ecological flows, while providing protection for El Niño-driven floods.

The assessment was carried out using the DMDU deiven Decision Tree Framework (DTF, Ray and Brown,2015). This is a bottom-up and two-step approach which, in this project, examined the performance of economic, resilience, robustness, and reliability metrics of selected interventions such as the construction of new reservoirs, the expansion of groundwater development, and the conservation and generation of green-infrastructure, subjected to various climate realizations. Also, the effects of changes in urban water supply and irrigation demands, siltation in existing reservoirs, and other non-climatic parameters and trade-offs were analyzed. The results of this study highlight the potential (while acknowledging limitations) of DMDU tools to prioritize investments in river catchment planning while engaging local stakeholders in decision making.

There is great potential for hydropower in Georgia, and this natural resource is likely to be increasingly utilised for power generation in the future. With the escalating demand for energy, government authorities are keen to harness renewable energy from the country’s main rivers. Often these projects aim at remote communities for which connecting to the national power grid is expensive. Hence, local hydropower production is an attractive and sometimes viable option. Critical is to conduct accurate feasibility assessments for hydropower generation at the different potential sites of interest considering climate change impacts. This work is a glacio-hydrological assessment of the expected river discharge at the planned hydropower sites in the Mestiachala river, Georgia.

Based on the requirements of the project, the Spatial Processes in Hydrology (SPHY) cryospheric-hydrological model was selected for the assignment. SPHY is a hydrological model that simulates the runoff at any location within the basin at a daily timescale. SHPY is ideal to assess glacier and snow influence in the river discharge and evaluate the impact of climate change. SPHY was used to predict the river discharge for the extended period of record and provide enhanced flow duration curves for hydropower assessment. In addition, total runoff components were quantified such as snow and glacier runoff.

This glacio-hydrological assessment delivered river discharge estimates for intake locations of two planned runoff river hydropower plants near Mestia, Georgia. The assessment included the calibration of a hydrological model, daily river discharge simulation for an extended period of record (1980-2015), climate change scenarios, and the derived flow duration curves to evaluate the flow operation of hydropower turbines. In addition, total runoff components were quantified such as snow and glacier runoff.

The daily river discharge was simulated at the two intake locations for two future periods (for the end of the concession period and for the end of century period) considering two climate change scenarios (RCP4.5 and RCP8.5). Hydrological model simulations were developed using future precipitation and temperature predictions and future glacier extent predictions. The climate change scenarios provide an evaluation of flow operation uncertainty. The daily flow calculations for the two sites can be used in the hydropower calculations, and to assess the overall profitability of the planned investment, taking into account energy prices, demand, etc.

In irrigated agriculture options to save water tend to focus on improved irrigation techniques such as drip and sprinkler irrigation. These irrigation techniques are promoted as legitimate means of increasing water efficiency and “saving water” for other uses (such as domestic use and the environment). However, a growing body of evidence, including a key report by FAO (Perry and Steduto, 2017) shows that in most cases, water “savings” at field scale translate into an increase in water consumption at system and basin scale. Yet despite the growing and irrefutable body of evidence, false “water savings” technologies continue to be promoted, subsidized and implemented as a solution to water scarcity in agriculture.

The goal is to stop false “water savings” technologies to be promoted, subsidized and implemented. To achieve this, it is important to quantify the hydrologic impacts of any new investment or policy in the water sector. Normally, irrigation engineers and planners are trained to look at field scale efficiencies or irrigation system efficiencies at the most. Also, many of the tools used by irrigation engineers are field scale oriented (e.g. FAO AquaCrop model). The serious consequences of these actions are to worsen water scarcity, increase vulnerability to drought, and threaten food security.

There is an urgent need to develop simple and pragmatic tools that can evaluate the impact of field scale crop-water interventions at larger scales (e.g. irrigation systems and basins). Although basin scale hydrological models exist, many of these are either overly complex and unable to be used by practitioners, or not specifically designed for the upscaling from field interventions to basin scale impacts. Moreover, achieving results from the widely-used FAO models such as AquaCrop into a basin-wide impact model is time-consuming, complex and expensive. Therefore, FutureWater is developing a simple but robust tool to enhance usability and reach, transparency, transferability in data input and output. The tool is based on proven concepts of water productivity, water accounting and the appropriate water terminology, as promoted by FAO globally (FAO, 2013). Hence, the water use is separated in consumptive use, non-consumptive use, and change in storage (Figure 1).

Separation of water use according to the FAO terminology.

A complete training package is developed which includes a training manual and an inventory of possible field level interventions. The training manual includes the following aspects: 1) introduce and present the real water savings tool, 2) Describe the theory underlying the tool and demonstrating some typical applications, 3) Learn how-to prepare the data required for the tool for your own area of interest, 4) Learn when real water savings occur at system and basin scale with field interventions.