The WEAP model simulates water availability, supply, and demand on a small scale for over 40 irrigation, domestic, and industrial sites, running on a daily timestep to include detailed reservoir operations and water use abstractions. The updated WEAP model was co-designed together with ARA-Sul, the regional water authorities of southern Mozambique. Monthly meetings were held to support information sharing and co-ownership throughout the project.

The model will aid ARA-Sul in water accounting and the licensing of water users served by the Pequenos Libombos Reservoir. The Pequenos Libombos Reservoir, with a storage capacity of 350 MCM, is the main water supplier to the Maputo Metropolitan Area inhabited by over 3 million people. In June 2024 sessions were held in The Netherlands were ARA-Sul was trained in the usage of the model.

The cover picture was taken by David Mucambe (ARA-Sul).

The project prepares robust climate mitigation and adaptation pipelines aligned with the Paris Agreement and responsive to DMCs climate change priorities. The TA will support interventions on departmental, sectoral and country levels with key activities including development of a regional strategy, upstream climate assessments, climate pipeline development, government dialogues and capacity building. As part of this project, FutureWater conducts a regional climate risk assessment for ten countries. This includes an assessment of baseline and future climate hazards, exposure and vulnerability and addressing sectoral impacts and adaptation options for a wide range of sectors. In addition country profiles summarizing climate risks for the ten countries are generated. The reginal climate risk assessment feeds into the climate strategy.

FutureWater will develop a high-level climate change and adaptation assessment for Turkmenistan to strengthen the water and agriculture sector’s resilience against climate change. The work involves a detailed hazard mapping exercise, employing observational and satellite-based information, to identify climate-related risks such as droughts, water scarcity, heat, salinity, erosion, and floods. These mapped hazards will be synthesized at the administrative level, presenting a comprehensive visual representation through figures and tables.

Key exposure and vulnerability datasets will be mapped, and pertinent sources for subsequent collection and analysis will be identified, setting the stage for a detailed risk assessment beyond the scope of work. The key output of this effort is the assembly of an inventory of climate adaptation measures gleaned from existing reports and official documents, contextualized to Turkmenistan’s unique circumstances, and an initial gap and opportunity assessment based on this inventory.

Based on the assessment, the adaptation options will be categorized and an initial prioritization will take place based on each option’s potential to mitigate risks across various hazards, its capacity for impactful outcomes beyond local scales, and a relative indication of expected cost-effectiveness. The outcome should provide a foundation for an integrated climate adaptation project. Concurrently, FutureWater will engage in country consultations, collaborating with stakeholders to confirm or refine identified adaptation options. These consultations will also explore potential synergies with ongoing and planned projects initiated by both the government and development partners.

As part of the FAO’s Asia-Pacific Water Scarcity Programme (WSP), FutureWater conducts a scoping study to identify opportunities to improve sustainable water resources management in the country. Following this scoping assessment, FutureWater develops bankable investment concept notes for activities to strengthen national capacities to implement policy actions that prepare Mongolia for a water scarce future. As part of the project, a high level stakeholder consultation forum with key government stakeholders and development partners is organized to validate the findings of the assessment and prioritize the investment concepts.

Mongolia has a strong commitment to IWRM, as defined in the 2012 Water Law, and good progress has been made. This includes the establishment of river basin organizations (RBOs) to manage the 29 river basins in the country. Currently, there are 21 operational RBOs. However, these bodies lack the experience needed for implementation of their tasks. Training and professional development of employees of the water basin authorities are of the utmost importance, to enable them to implement the assigned tasks and be better positioned for advancing implementation of Target 6.5 of the 2030 Agenda for Sustainable Development.

 

To achieve the objectives the project has a technical component and stakeholder engagement component. On the technical side, hydrological models will be updated and validated. Climate change scenarios will be used as inputs for the testing of adaptation strategies within the Limpopo Basin. The adaptation include traditional grey infrastructure and additionally nature based solutions. The benefits analysis of the adaptation measure will cover macro and micro socio-economical benefits.

The results of this study will then be used to inform the development of a first-generation Transboundary Diagnostic Analysis (TDA) for the Limpopo River Basin (LRB). Through this, the individual basin countries will agree on a set of transboundary development priorities for the basin, which will guide both transboundary and national investments in the future, through a Strategic Action Plan (SAP) and National Action Plans (NAPs).

Within the project we cooperate with the hydrologists of ARA-Norte to discuss and establish the baseline for a water system analysis in the Monapo Catchment. Following discussion and mapping sessions, FutureWater is developing a Water Allocation Model in WEAP that includes climate change scenarios and mitigation and adaptation measures to asses the water availability of the catchment. Part of the assignment includes continuous training to local professional, to ensure the application of the developed model in the analysis of the system and elaborating specific proposal for implementation in the region.

Southern Spain is a highly productive agricultural region, but with huge challenges around water scarcity and environmental sustainability. There is a demand in the agricultural sector to work towards water stewardship in Spain. The Alliance for Water Stewardship has developed a Standard which helps retailers and their suppliers to cause change at scale. This approach recognizes that there are common challenges that could be more easily overcome through a collective, place-based approach.

In the Doñana region, berry farms and groundwater usage are causing a conflict with the unique ecosystems in the National Park. A catchment assessment and active stakeholder engagement is needed as a first step in this region to work towards water stewardship. The catchment assessment will provide information on the catchment context, in line with the requirements of the Standard. The purpose of the assessment is to reduce the burden on agricultural sites by providing them with a common set of information which they and others can use to inform responses to their shared water challenges.

Nigeria as a country faces extensive Water Security Challenges (WSCs), from water availability and provisioning to water quality issues. These will become exacerbated by multiple future pressures, including huge increases in population and a changing climate. Oshun and Ogun catchments are located in the South West of Nigeria, in the same area as Lagos. These catchments face multiple challenges including unregulated groundwater extraction and poor sanitation infrastructure which compromise societal access to water.

NbS have the potential to contibute to addressing WSCs by increasing the overall resilience of the hydrological system, helping to increase infiltration to groundwater and buffer water quality issues. Alongside this, NbS can provide a wealth of co-benefits including carbon sequestration and increased biodiversity, complementing more traditional so-called ‘grey’ infrastructure such as pipelines and treatment plants.

Through extensive stakeholder consultation paired with GIS analysis and hydrological modelling, this project will help outline NbS which are best placed to address key WSCs, alongside identifying beneficiaries in the catchments of interest and existing parnerships in the catchment which are capable of delivering projects on-the-ground.

This work lays the foundations for the creation of so-called Watershed Investment Programmes (WIPs) in Osun and Ogun catchments, alongside the identification of further catchments in Nigeria which are disposed towards similar initiatives. WIPs aim to sustain and enhance the provisioning of key water-related ecosystem services by funding the conservation and restoration of lands that protect water quantity and quality. This is achieved through connecting downstream water users (e.g. water utilities, local governments, businesses, and the public) to upstream land managers (e.g. farmers and rural landowners). They unite these parties and others around the goal of enhancing water quality and quantity for societal benefits.

Groundwater availability is critical to the Umbeluzi Catchment. Currently, there is a need for a simple tool that can asses the availability of resources in the ground.

This especially to asses the permits for groundwater extractions. It is expected that a simplified modelling approach can provide a trend analysis sufficient for the water authorities in Mozambique to perform assessments of the sub-surface water availability. Furthermore, the water availability will be assessed for current and future conditions, under different scenarios of climate change and demand increase.

Within the project, FutureWater will develop a groundwater model in WEAP, using the Strategic Model previously build for the Umbeluzi catchment. To this end a detailed data gathering activity will take place proceed by developing the model. We aim to validate and improve the model with measurements available of groundwater levels in the catchment. The model will be validated with the technical team of ARA-Sul. Ultimately, a dedicated training session for ARA-SUl will ensure that model operation is performed by local experts.

In our ongoing commitment to bolster the efforts of ARA-Sul in Mozambique, FutureWater recently conducted an intensive training course focusing on the application of the Strategic Water Allocation Model within the Umbeluzi Catchment area. This significant initiative entailed the utilization of the renowned Water Evaluation and Planning System (WEAP) model, coupled with a comprehensive update of critical information and underlying assumptions.

The primary objective of this training was to empower the dedicated professionals at ARA-Sul with the knowledge and skills necessary to effectively manage and optimize water resources within the region. The strategic allocation of water resources is of paramount importance, especially in areas like the Umbeluzi Catchment, where water plays a pivotal role in sustaining livelihoods, ecosystems, and economic activities.

One key aspect of this training involved fine-tuning the analysis-scenarios to comprehensively assess potential bottlenecks and challenges within the water allocation system. Identifying these bottlenecks is essential for making informed decisions, developing mitigation strategies, and ensuring the sustainable utilization of water resources.

Our collaborative efforts with ARA-Sul extend beyond the training itself. We are committed to providing ongoing support and guidance to ensure the long-term success of this endeavor. Through regular follow-up activities and consultations, the technical professionals at ARA-Sul are now well-equipped to independently maintain their model and conduct the essential analyses required for informed decision-making.

More information on the training here

Training on WEAP. June 2023.