This tailor-made training aims to build capacity in using tools to support climate-smart irrigation strategies to improve salinity control and enhance agricultural production. The training provides participants with relevant hands-on experience and cutting-edge knowledge on innovative solutions in earth observation technologies and apply this to assess measures for increasing water efficiency in agriculture, increase production and achieve water and climate-smart agriculture.

The training programme will consist of two e-learning training periods, that are separated by a 3-week period of regular on-distance support. The main e-learning training will take place over a 6-week period and is structured around 3 training modules that are divided into several training sessions. These training sessions are comprised of plenary video conferences and include assignments that can be worked on pairwise of individually. Attendance and progress are monitored through the FutureWater Moodle School. Each training module is tailored around different tools for gaining insight into salinity issues, improving salinity control, and enhancing agricultural production in Iraq:

  1. Geospatial mapping of climatic variables, soil salinity and irrigated areas using remote sensing and cloud computing.
  2. Soil-water-plant modeling to determine optimal irrigation water allocations to control water tables and soil salinity.
  3. Crop water productivity options to achieve real water savings in irrigated agriculture.

It is expected that the obtained knowledge and capacity in better mitigating soil and water salinization problems will be embedded into the organization(s) of the participants. This will contribute to a further increase in the agricultural productivity and food security in Iraq.

The Middle East and North Africa (MENA) region is considered the most water-scarce region of the world. Disputes over water lead to tension within communities, and unreliable water services are prompting people to migrate in search of better opportunities. Water investments absorb large amounts of public funds, which could often be used more efficiently elsewhere. As the region’s population continues to grow, per capita water availability is set to fall by 50 percent by 2050, and, if climate change affects weather and precipitation patterns as predicted, the MENA region may see more frequent and severe droughts and floods

Map of yearly average precipitation in the MENA region (mm).

The need for alternative and improved water management options is therefore urgently needed, but a clear overview on what the main focus should be is lacking. A broad range of options exists which can be grouped by different approaches such as reducing the demand, increasing the supply, transfer between different sectors, transfer within different sectors, increase storage etc. An important aspect for the MENA region includes desalination.

Map of aridity in the MENA region.

To explore different options the World Bank initiated an initiative to generate an improved understanding of water issues in the region and overview of available options under different scenarios of water supply and demand management with special focus on desalination, taking into account the energy nexus and environmental concerns. As part of this initiative, FutureWater will carry out an assessment of water stress in the MENA region, including associated marginal cost of water supply to meet the water supply need. Conducting consultation workshops and meetings will be organized with relevant parties in the region (governmental, universities, civil society groups).