Agriculture is a key sector of the Rwandan economy; it contributes approximately 33% to the gross domestic product and employs more than 70% of the entire labour force. Although some farmers are already using water-efficient irrigation infrastructure, too much of the available water is still lost due to unsustainable use of existing irrigation systems, and/or maximum crop yields are not achieved due to under-irrigation.

Hence, small to medium-sized food producers in Rwanda do not have sufficient access to information regarding optimal irrigation practices. To close this information gap, FutureWater has devised an innovation that can calculate a location-specific irrigation advice based on Virtual Weather Stations, expressed in an irrigation duration (“SOSIA”). The use of the outdated CROPWAT 8.0 method, and the lack of good coverage of real-time weather stations in Rwanda, means that current advice falls short. In addition, existing advisory services are often too expensive for the scale on which small to medium-sized farmers produce. There is a potential to increase the productivity of the irrigation water by up to 25%. Initially, the innovation will be disseminated via the Holland Greentech network, with a pilot in Rwanda consisting of 40 customers.

FutureWater has found with Holland Greentech an ideal partner to roll-out this innovation due to their presence in and outside of Rwanda, where they provide irrigation kits and advice. This offers the opportunity to quickly scale-up the proposed innovation. With their expertise in agro-hydrological modeling and the African agricultural sector, FutureWater and Holland Greentech respectively have acquired ample experience to make this innovation project and its knowledge development to a success.

The Asian Development Bank (ADB) identified the need for a detailed Climate Risk and Adaptation (CRA) assessment for the DKSHEP to understand the risk posed by the changing climate on hydropower and the environment. Therefore, the objective of this Climate Risk and Adaptation Assessment (CRA) is to assess the vulnerability of the project components to future climate change and recommend adaptation options for climate-proofing of the design. Therefore, this CRA covers both type 2 adaptation, related to system change and resilience building, as well as type 1 adaptation related to climate-proofing This CRA assesses historic trends in relevant climate-related variables and analyses climate projections for the DKSHEP. Based on these projections, an assessment of the current and future climate risks and vulnerabilities relating to the proposed project activities will be outlined. Finally, recommendations will be presented for climate adaptation measures.

UNCCD is the sole legally binding international agreement linking environment and development to sustainable land management. As some of the most vulnerable ecosystems and peoples can be found in arid, semi-arid and dry sub-humid areas, UNCCD especially addresses these drylands. Productive capacities in drylands are threatened by megatrends such as climate change and land degradation, where changing precipitation and temperature potentially exacerbate processes of degradation and where degraded lands make productive systems more vulnerable to impacts of climate change.

UNCCD therefore aims to support the reorientation of productive capacities towards sustainable and resilient patterns, in order to reverse the impact of land degradation and mitigate climate change impact. To this end, UNCCD is interested in the identification of regions and crops at a particularly high risk of land degradation and climate change impact. The outcomes of this activity should support informing of national governments of risk profiles of their main cash crops and, subsequently, support identification of alternatives for value chains that are projected to become insufficiently productive in the future.

Subsequent work will link towards opportunities around other megatrends such as population changes, consumption patterns, energy and shifting geopolitical patterns present in the identification of new value chains.

In irrigated agriculture options to save water tend to focus on improved irrigation techniques such as drip and sprinkler irrigation. These irrigation techniques are promoted as legitimate means of increasing water efficiency and “saving water” for other uses (such as domestic use and the environment). However, a growing body of evidence, including a key report by FAO (Perry and Steduto, 2017) shows that in most cases, water “savings” at field scale translate into an increase in water consumption at system and basin scale. Yet despite the growing and irrefutable body of evidence, false “water savings” technologies continue to be promoted, subsidized and implemented as a solution to water scarcity in agriculture.

The goal is to stop false “water savings” technologies to be promoted, subsidized and implemented. To achieve this, it is important to quantify the hydrologic impacts of any new investment or policy in the water sector. Normally, irrigation engineers and planners are trained to look at field scale efficiencies or irrigation system efficiencies at the most. Also, many of the tools used by irrigation engineers are field scale oriented (e.g. FAO AquaCrop model). The serious consequences of these actions are to worsen water scarcity, increase vulnerability to drought, and threaten food security.

There is an urgent need to develop simple and pragmatic tools that can evaluate the impact of field scale crop-water interventions at larger scales (e.g. irrigation systems and basins). Although basin scale hydrological models exist, many of these are either overly complex and unable to be used by practitioners, or not specifically designed for the upscaling from field interventions to basin scale impacts. Moreover, achieving results from the widely-used FAO models such as AquaCrop into a basin-wide impact model is time-consuming, complex and expensive. Therefore, FutureWater developed a simple but robust tool to enhance usability and reach, transparency, transferability in data input and output. The tool is based on proven concepts of water productivity, water accounting and the appropriate water terminology, as promoted by FAO globally (FAO, 2013). Hence, the water use is separated in consumptive use, non-consumptive use, and change in storage.

A complete training package was developed which includes a training manual and an inventory of possible field level interventions. The training manual includes the following aspects:

  1. Introduce and present the real water savings tool
  2. Describe the theory underlying the tool and demonstrating some typical applications
  3. Learn how-to prepare the data required for the tool for your own area of interest
  4. Learn when real water savings occur at system and basin scale with field interventions

The study will focus on selection of key traded crops between the EU and Africa and their key producing regions. The tasks will include overall analysis of current practices and the background in the regions, determination of key sensitive parameters in order to select key crops and food products and map hotspot regions. In addition, project team will assess climate risks for these hotspots on key crops and food products and link these risks with the importing countries. Climate risks will be assessed by identifying the multiple climate sensitivities on the food systems in each region, assessing changes predicted by a CMIP6 (latest) climate model ensemble on key agriculture-related climate indices, and analysing impacts on production-related indices, distinguishing between rainfed and irrigated production systems. It will be focused on country specific case studies in each partner country. The impacts of climate change on trade patterns will be evaluated to assess the carbon- and water footprints and virtual water profiles of key traded commodities of these countries. At the end, the project team will focus on policy relevance and assessment of adaptation strategies and identify interventions that will be needed, at which point in the system, and from which sector (or actor) is of interest.

The outcomes of CREATE will be used to increase awareness of the risks that climate change poses to the agro-food trade and the broader economy at large. They can contribute to efforts by the governments (macro-scale), the communities (meso-scale), as well as relevant agricultural producers (micro scale) in the case study countries, by providing essential information for promoting actions towards mitigating the negative consequences of climate change on agro-food trade.

The Asian Development Bank (ADB) seeks to develop a new climate and disaster risk screening and assessment tool to replace the current tool in use. The next generation tool will embody lessons learned over almost ten years of ADB activities aimed at improving the climate and disaster resilience of ADB investments, including inputs from a wide range of ADB staff and consultants.

The tool will be designed to provide scientifically credible and context specific screening of projects for risks associated with climate, climate change and a range of geophysical hazards at project concept stage in order to guide subsequent activities, including the design of adaptation and resilience strategies and interventions.

The next generation tool will provide greater access to the underlying data, greater flexibility in user-initiated exploration of specific risks, greater scope for screening more spatially complex projects such as road networks and power grids. The tool will also include a module that allows a light-touch Climate Risk and Adaptation (CRA) assessment to be produced, semi-automatically. Future modules will support Paris Alignment and automated completion of applicable sections of the adaptation (BB2) assessment.and will be expanded to provide a basis for more detailed climate risk and adaptation assessments as appropriate.

The methodology behind the tool is being developed by a specialized team of experts in which FutureWater provides expertise on climate and hazard data, climate model projections, and climate risk assessments. The methodology is based on an iterative and consultative process with an external expert group, ADB staff and experts on software development and user experience design. The methodology defines the risk calculation based on hazard, exposure and vulnerability spatial and project data, and user inputs.
The tool will also become available for ADB member countries. Two pilots in Laos and Uzbekistan will make sure that the tool will align with their requirements and datasets.

FutureWater is involved in testing the methodology in these pilot countries and developing example risk screening and CRA reports.

The “Integrated Strategic Water Resources Planning and Management for Rwanda” consultancy project will assess and evaluate the availability and vulnerability of the country’s water resources up to around 2050 taking climate change into consideration.

Based on this, prioritization of investment options in grey and green infrastructure will take place, in order to formulate water resources investment plans. A revised water resources policy will be prepared that is in line with water security targets and SDG 6.

In more detail, the hydrological modelling assessment will result in update water accounts per sub-catchment up to 2050. Field work for assessing groundwater resources in key areas across the country is also performed. A detailed water allocation assessment will be performed using a water resources system model (WEAP), addressing water needs for the various users up to 2050. Water allocation plans will be developed from this modelling work, incorporating stakeholder inputs.

Then, a scenario analysis is performed to evaluate the potential of additional storage in the landscape: grey (reservoirs) and green (through Nature-based Solutions). This analysis will be complemented by field work and a pre-feasibility analysis will be performed on the prioritized options. A SWOT analysis will then lead to a number of possible flagship projects which of which a concept note is prepared.
Support to the revised national policy for water resources management will also be provided by defining new policy statements and actions informed by the results from the previous tasks and developing a new water resources policy that will guide the country towards achieving the NST1 and Vision 2050 targets.

Nepal’s freshwater availability and timing are under thread by extreme temperature and precipitation variations, changing monsoon patterns, melting of ice caps and glaciers, and reduced snow cover. Some initial estimated economic cost of climate change in agriculture, hydropower and water induced disasters show a number of up to 2-3% of GDP per year by 2050.

The proposed project aims to improve landscape-scale adaptation and disaster risk management through a set of outputs:

  1. Climate-smart landscape management practices adopted and enhanced
  2. Climate-resilient rural livelihoods developed
  3. Integrated disaster risk reduction and climate change adaptation approaches
  4. Capacities of local communities, regional and national decision-makers, and institutions on climate change adaptation and disaster risk reduction strengthened

FutureWater developed a so-called “Problem Tree” analysis for the proposed project. A Problem Tree is a helpful tool to understand the relationships between a problem, its causes, and its effects. The trunk of the tree represents the main problem, the roots the causes of the problem, and the branches the direct and indirect effects of the problem.

The project will be further developed as a so-called Climate Change Adaptation Project. More traditional development projects include also climate proofing, but focus is on development investments and adaptation is a secondary objective. Although those development projects contribute to adaptation (by helping the proposed asset or activity being financed to adapt to identified physical climate risks to the asset/activity), the primary objective of such a project is not adaptation. Climate Change Adaptation Projects are intentionally designed to enable climate adaptation of a high-risk topics. This is achieved by supporting outputs and activities that reduce the impacts of current and future expected climate risks and/or address barriers to adaptation, thereby advancing resilience. So this Climate Change Adaptation Project is meant to advance Nepal’s goal on adaptation.

FutureWater has undertaken a country wide climate risk screening as starting point for further project specific assessments. Main conclusions in the context of the program objectives were that by increased temperatures water supply will be challenged by the risk that water demand will increase and that at the same that supply will reduce by higher evaporation from catchments. Also waste water treatment will face the risk of reduced efficiencies.

India’s number of warm days and nights are expected to increase up to 70%. Water supply, wastewater treatment and urban water bodies will face same challenges as by increased temperature but more intense during those days. Similarly, heat waves are projected to be 3 to 4 times higher by the end of the twenty-first century. The result will be that water supply, waste water treatments and urban water bodies will face same challenges as under increased temperature but even more pronounced during those heat wave periods.

An increase in mean precipitation is uncertain according to various climate projection. If this increase will happen the impact on the three program components (water supply, waste water, urban water bodies) will be manageable. However, a decrease in mean precipitation is projected as well according to some climate scenarios. If this will happen then water supply will be at high risk of water shortages by a higher demand from users and a reduction in supply from rivers, streams and in the longer run from groundwater. An increase in daily precipitation extremes is quite likely to happen according to most climate scenario. Risk of additional flooding will increase.

The analysis concluded that since the location where projects will be implemented in the context of this program has to be defined yet, only generic conclusions relevant for the entire country could be provided. It was highly advised that for each specific project that will be implemented a detailed Climate Risk Assessment has to be undertaken.

The objectives of this climate risk assessment for the Li River in China is to assess current flood risk and future flood risk in the Li river basin in China. With an average of 1800 mm annual total rainfall, floods are severe and frequent in the region. Additionally to rainfall, severe floods in are often related to discharges from upstream reservoirs

Given the fact that this area is data scarce, global datasets with climatic data (ERA5-Land), soil parameters (HiHydroSoil) and land cover (Copernicus) were used to feed a hydrological HEC-HMS model to calculate the discharge for the extreme event of June 2020. Based on measured water levels and discharge, it was possible to develop rating curves and with these rating curves, it was possible to estimate water levels in the river for current (validation) and future conditions. This analysis served as input for the full climate risk assessment,  in which possible interventions were proposed to reduce flood risk in the future.