Urban flood management in Laos is typically based on a limited, hard infrastructure approach. With the aim to shift this paradigm towards an integrated approach that enhances climate resilience, the project “Building resilience of urban populations with ecosystem-based solutions in Lao PDR” was approved by the Green Climate Fund Board in November 2019 with a GCF grant of US$10 million. United Nations Environment Programme (UNEP) serves as the Accredited Entity for the project. Activities are executed by the State of Lao PDR through the Ministry of Finance and Ministry of Natural Resources and Environment (MONRE) as well as UNEP. The project is implemented across five years (2020-2025) covering four provincial capitals in the country: Vientiane, Paksan, Savannakhet, and Pakse.

One component of the project involves technical and institutional capacity building to plan, design, implement and maintain integrated urban Ecosystems-based Adaptation (EbA) interventions for the reduction of climate change induced flooding. As a part of Integrated Climate-resilient Flood Management Strategy (ICFMS) development, the project conducts hydrological, hydraulic and climate risk assessments to inform climate change adaptation solutions for risk reduction in Vientiane, Paksan, Savannakhet and Pakse.

A consortium of FutureWater, Mekong Modelling Associates (MMA) and Lao Consulting Group (LCG) was contracted by MONRE to implement the related activities. FutureWater leads and coordinates this assignment and contributes remote sensing analyses with state-of-the-art innovative tools, climate risk assessments, and training activities. To ensure sustainability and effective technology transfer, the modelling and mapping infrastructure and trained staff will be hosted within MONRE and a knowledge hub that is established within the National University of Laos.

 

To achieve the objectives the project has a technical component and stakeholder engagement component. On the technical side, hydrological models will be updated and validated. Climate change scenarios will be used as inputs for the testing of adaptation strategies within the Limpopo Basin. The adaptation include traditional grey infrastructure and additionally nature based solutions. The benefits analysis of the adaptation measure will cover macro and micro socio-economical benefits.

The results of this study will then be used to inform the development of a first-generation Transboundary Diagnostic Analysis (TDA) for the Limpopo River Basin (LRB). Through this, the individual basin countries will agree on a set of transboundary development priorities for the basin, which will guide both transboundary and national investments in the future, through a Strategic Action Plan (SAP) and National Action Plans (NAPs).

The objective is to support the delineation and launching of a a Watershed Investment Program to improve multi-stakeholder collaboration and sustainable funding mechanisms to protect and restore riparian buffer zones and to implement runoff attenuation features to reduce eroded sediments entering the river.

To support the science streams, FutureWater is applying open source tools such as INVEST and RIOS Tool, together with Remote Sensing analysis to elaborate on a NbS opportunity mapping analysis. Besides, we aim to provide quantitative results on NbS benefits to reduce sediment loads entering the river system.

Nigeria as a country faces extensive Water Security Challenges (WSCs), from water availability and provisioning to water quality issues. These will become exacerbated by multiple future pressures, including huge increases in population and a changing climate. Oshun and Ogun catchments are located in the South West of Nigeria, in the same area as Lagos. These catchments face multiple challenges including unregulated groundwater extraction and poor sanitation infrastructure which compromise societal access to water.

NbS have the potential to contibute to addressing WSCs by increasing the overall resilience of the hydrological system, helping to increase infiltration to groundwater and buffer water quality issues. Alongside this, NbS can provide a wealth of co-benefits including carbon sequestration and increased biodiversity, complementing more traditional so-called ‘grey’ infrastructure such as pipelines and treatment plants.

Through extensive stakeholder consultation paired with GIS analysis and hydrological modelling, this project will help outline NbS which are best placed to address key WSCs, alongside identifying beneficiaries in the catchments of interest and existing parnerships in the catchment which are capable of delivering projects on-the-ground.

This work lays the foundations for the creation of so-called Watershed Investment Programmes (WIPs) in Osun and Ogun catchments, alongside the identification of further catchments in Nigeria which are disposed towards similar initiatives. WIPs aim to sustain and enhance the provisioning of key water-related ecosystem services by funding the conservation and restoration of lands that protect water quantity and quality. This is achieved through connecting downstream water users (e.g. water utilities, local governments, businesses, and the public) to upstream land managers (e.g. farmers and rural landowners). They unite these parties and others around the goal of enhancing water quality and quantity for societal benefits.

To facilitate the needs of ZIPAK, this training aims to build data-driven capacities relevant to sustainable nature conservation practices and ecosystem-based natural resources management in Iran:

  • Leveraging the Climate Change Knowledge Portal (CCKP) for performing climate risk and vulnerability assessments
  • Leveraging the online dashboard Earth Map for environmental hazard mapping and socio-economic risk assessments
  • Applying the InVest model (Integrated Valuation of Ecosystem Services and Tradeoffs) for assessing ecosystem service provision

The training focuses on knowledge and skills development and how how to meaningfully integrate these capabilities into ZIPAK’s objectives on sustainable management of the environment and natural resources.

The Mediterranean Region is facing growing challenges to ensure food and water supply as countries experience increasing demand and decreasing availability of natural resources. The nexus approach aims at managing and leveraging synergies across sectors with an efficient and integrated management of the Water, Energy, Food, and Ecosystems Nexus (WEFE).

BONEX objectives are to provide practical and adapted tools, examine concrete and context-adapted technological innovations, enhance policies and governance and facilitate WEFE Nexus practical implementation that balances the social, economic, and ecological trade-offs.

The project aims at producing a novel, transdisciplinary, diagnostic WEFE Bridging Framework, which combines methods in a context-specific manner and going beyond disciplinary silos. The diagnostic tools supporting the framework will be developed and tested in seven selected demonstration projects in the region which pilot innovative technologies (agrivoltaics, wastewater reuse systems, etc.).

As a result, BONEX will provide policymakers and practitioners with an interactive decision-making tool to evaluate trade-offs, synergies, and nexus solutions approaches in a transdisciplinary manner. Further, it will produce valuable experiences with tailoring innovative WEFE Nexus technologies that provides new business opportunities. The WEFE nexus approach is required to implement sustainable agri-food systems and preserve ecosystems.

Within BONEX FutureWater will actively contribute to the package of diagnostic tools. A simple water accounting tool (REWAS) will be used to evaluate if ‘Real Water Savings’ are achieved with innovative technologies. The water accounting tool evaluates water flows at field level and irrigation district scale and determines if any ‘real savings’ are achieved. The tool also incorporates the aspects of food production (crop yield) and will introduce components for evaluating energy and water quality aspects to complement the WEFE Nexus aspects. The seven demonstration projects will be used to demonstrate and iteratively develop this water accounting tool. A hydrological analysis is performed in selected locations to also evaluate the impact at basin (watershed) scale. Eventually the results from these analyses will be translated into policy implications and achievements of SDG’s (sustainable development goals).

This project is part of the PRIMA programme supported by the European Union.

The beneficiaries of this training, provided by FutureWater together with Solidaridad, belong to the Zambia Agricultural Research Institute (ZARI).
ZARI is a department within the Ministry of Agriculture of Zambia with the overall objective to provide a high quality, appropriate and cost-effective service to farmers, generating and adapting crop, soil and plant protection technologies. This department comprises a number of sections, one of which, for the purpose of this training request is the Soil and Water Management (SWM) division. ZARI and the SWM carry out demand-driven research, trying to find solutions to the problems faced by Zambian small-scale farmers, especially considering the near- and long-term impacts of climate change.
The training programme consists of a hybrid approach of e-learning and in-person training sessions and is structured around the following modules:
  1. Remote sensing-based analysis using Google Earth Engine to assess trends in land use, management, degradation and hotspots for intervention.
  2. Data collection and database management.
  3. GIS and remote sensing to assess suitability for SWC.
  4. Effectiveness and prioritization of SWC using open-source tools.
  5. Independent working on case study.
At the end of the training, it is expected that participants have achieved several objectives such as acquisition of technical skills for extracting relevant data from open access remote sensing products and improved knowledge of data collection and database management.

Water Funds are a well-established model for facilitating collective action to address water security challenges through the implementation of nature-based solutions (NBS) as a complement for more traditional so-called ‘grey’ infrastructure such as pipelines and treatment plants. This assignment represents the first of many engagements in which FutureWater are employed through an umbrella agreement with the Nature for Water Facility. Via this agreement, FutureWater staff can be assigned as technical experts to help develop and direct the implementation of Water Funds across the world.

The objectives of the Norfolk Water Fund is to secure good quality, long-term water resources for all water users, while protecting the environment and showcasing the county as an international exemplar for collaborative water management. The programme seeks to demonstrate how cross-sector, integrated water management and can deliver multiple benefits and help achieve the county’s net zero targets. FutureWater’s role to date has included: developing a methodology to spatially characterise water security challenges across Norfolk; providing mapping and content inputs to a pre-feasibility report on the potential for NbS to deliver against water-related objectives; delivering a portal to show delivery of NbS projects; helping coordinate a stakeholder engagement event; and more recently, the development of reference material for a call for projects.

This MIT feasibility project investigates the opportunities of an innovation project for determining the biomass potential from local nature management and green maintenance using the publicly available Lidar point cloud of the Netherlands.

The results of this feasibility project may lead to an innovative logistics support service where producers and consumers who play a role in the local biomass chain (e.g. nature management organizations, regional governments, energy producers) are provided advice and insight in the stock and availability of local woody biomass suitable for district heating projects or other local energy projects and biobased applications.

In the planned development path, a prototype of this service will be developed, demonstrated, tested, and validated for a pilot area. Using segmentation and classification algorithms, individual trees will be identified and tree-specific parameters relevant to biomass determination will be extracted. The economic perspective and market potential will also be investigated and relevant literature will be reviewed.

With a total annual turnover of approximately 500 million euros, the Netherlands is a major player in the production, import and export of fruits. In spring, when the night temperature drops below freezing point and fruit trees are flowering, fruit growers must protect their crops. If the flower buds were to freeze then no fruit is formed, resulting in enormous economic losses. Protecting the buds is usually done with the help of water, which requires an average of 30 m3 of water per hectare per hour. If several nights of frost occur the limit on water availability can be reached quickly. Moreover, if the quality of the water is not sufficient (e.g. due to salinity), the water can also cause damage to the crops. As a result, about 30% of the fruit companies in the Netherlands cannot use water for frost protection.

As an alternative to using water, wind machines to protect fruit trees against frost is emerging as a promising new and innovative technique. The propeller of the wind machine mixes the cold air with the higher, warmer air and can thus raise the temperature on the ground by several degrees. This feasibility project explores the opportunities of an innovation project for monitoring the effectiveness of wind machines for frost protection in fruit cultivation using flying sensors (drones) equipped with a thermal thermal imager. The results of this feasibility project may lead to an innovative information service intended for fruit growers to:

  1. Provide insight into the effectiveness of wind machines for frost protection as a cost-effective and sustainable alternative to spraying water. This service can target growers who already use wind machines and want to know how effective wind machines provide protection against night frost, but also growers who are considering wind machines and want to know to what extent the application can be suitable for their field.
  2. Advise how the application of wind machines can be optimized in the business operations of fruit companies. This includes optimal placement of the wind machine in the orchard and whether the wind machine is properly adjusted for the type of fruit being grown. This relies on what rotational speeds are needed for a given temperature increase, at what angle the propeller should be aimed, etc.)

A prototype of this service will be developed and demonstrated for a pilot area through a development process. An important part of the development trajectory is research into and development of a:

  1. State-of-art interactive visualization tool to visualize spatial information within a
  2. (beta) web application such as a dashboard to offer the innovative information service to the end user (fruit grower).

The power of flying sensors with thermal imaging cameras is that the temperature-increasing effect of wind machines can be measured very precisely and can also be mapped spatially. This visual information can provide the fruit grower with insight and confidence that wind machines are effective for frost protection.